Foxo transcription factors control regulatory T cell development and function.

نویسندگان

  • Yann M Kerdiles
  • Erica L Stone
  • Daniel R Beisner
  • Maureen A McGargill
  • Irene L Ch'en
  • Christian Stockmann
  • Carol D Katayama
  • Stephen M Hedrick
چکیده

Foxo transcription factors integrate extrinsic signals to regulate cell division, differentiation and survival, and specific functions of lymphoid and myeloid cells. Here, we showed the absence of Foxo1 severely curtailed the development of Foxp3(+) regulatory T (Treg) cells and those that developed were nonfunctional in vivo. The loss of function included diminished CTLA-4 receptor expression as the Ctla4 gene was a direct target of Foxo1. T cell-specific loss of Foxo1 resulted in exocrine pancreatitis, hind limb paralysis, multiorgan lymphocyte infiltration, anti-nuclear antibodies and expanded germinal centers. Foxo-mediated control over Treg cell specification was further revealed by the inability of TGF-β cytokine to suppress T-bet transcription factor in the absence of Foxo1, resulting in IFN-γ secretion. In addition, the absence of Foxo3 exacerbated the effects of the loss of Foxo1. Thus, Foxo transcription factors guide the contingencies of T cell differentiation and the specific functions of effector cell populations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Altered Suppressor Function of Regulatory T Cells in Type 1 Diabetes

Background: Type 1 diabetes (T1D) is a T cell mediated autoimmune disease targeting the insulin-producing β cells within pancreatic islets. Autoimmune diseases may develop as a consequence of altered balance between regulatory (Tregs) and autoreactive T cells. Objectives: To evaluate Treg cells frequency and suppressive function in the peripheral blood of newly diagnosed T1D patients in compari...

متن کامل

Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells

The transcription factor Foxp3 is essential for optimal regulatory T (T reg) cell development and function. Here, we show that CD4(+) T cells from Cbl-b RING finger mutant knockin or Cbl-b-deficient mice show impaired TGF-beta-induced Foxp3 expression. These T cells display augmented Foxo3a phosphorylation, but normal TGF-beta signaling. Expression of Foxo3a rescues Foxp3 expression in Cbl-b-de...

متن کامل

14-3-3 proteins: a family of versatile molecular regulators.

The 14-3-3 proteins are a family of acidic regulatory molecules found in all eukaryotes. 14-3-3 proteins function as molecular scaffolds by modulating the conformation of their binding partners. Through the functional modulation of a wide range of binding partners, 14-3-3 proteins are involved in many processes, including cell cycle regulation, metabolism control, apoptosis, and control of gene...

متن کامل

Tumor and Stem Cell Biology FOXO Transcription Factors Control E2F1 Transcriptional Specificity and Apoptotic Function

The transcription factor E2F1 is a key regulator of proliferation and apoptosis but the molecular mechanisms that mediate these cell fate decisions remain unclear. Here, we identify FOXO transcription factors as E2F1 target genes that act in a feed-forward regulatory loop to reinforce gene induction ofmultiple apoptotic genes.We found that E2F1 forms a complex with FOXO1 and FOXO3. RNAi-mediate...

متن کامل

Analysis of the Transcriptional Program of Developing Induced Regulatory T Cells

CD25+ regulatory T cells develop in the thymus (nTregs), but may also be generated in the periphery upon stimulation of naive CD4 T cells under appropriate conditions (iTregs). To gain insight into the mechanisms governing iTreg development, we performed longitudinal transcriptional profiling of CD25+ T cells during their differentiation from uncommitted naive CD4 T cells. Microarray analysis o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Immunity

دوره 33 6  شماره 

صفحات  -

تاریخ انتشار 2010